ELR-SCAR Publications

Our publications

 

  1. Contessotto, P., Spelat, R., Ferro, F., Vysockas, V., Krivickienė, A., Jin, C., Chantepie, S., Chinello, C., Pauza, A. G., Valente, C., Rackauskas, M., Casara, A., Zigmantaitė, V., Magni, F., Papy-Garcia, D., Karlsson, N. G., Ereminienė, E., Pandit, A., & Da Costa, M. (2023). Reproducing extracellular matrix adverse remodelling of non-ST myocardial infarction in a large animal model. Nature communications, 14(1), 995. https://doi.org/10.1038/s41467-023-36350-1

 

  1. Contessotto, P., Orbanić, D., da Costa, M., Jin, C., Owens, P., Chantepie, S., Chinello, C., Newell, J., Magni, F., Papy-Garcia, D., Karlsson, N. G., Kilcoyne, M., Dockery, P., Rodríguez-Cabello, J. C., & Pandit, A. (2021). Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocardial infarction in sheep. Science translational medicine, 13(581), https://doi.org/10.1126/scitranslmed.aaz5380

 

  1. Contessotto, P., & Pandit, A. (2021). Therapies to prevent post-infarction remodelling: From repair to regeneration. Biomaterials, 275, https://doi.org/10.1016/j.biomaterials.2021.120906

 

  1. Marsico, G., Jin, C., Abbah, S. A., Brauchle, E. M., Thomas, D., Rebelo, A. L., Orbanić, D., Chantepie, S., Contessotto, P., Papy-Garcia, D., Rodriguez-Cabello, C., Kilcoyne, M., Schenke-Layland, K., Karlsson, N. G., McCullagh, K. J. A., & Pandit, A. (2021). Elastin-like hydrogel stimulates angiogenesis in a severe model of critical limb ischemia (CLI): An insight into the glyco-host response. Biomaterials, 269, https://doi.org/10.1016/j.biomaterials.2020.120641

 

  1. Contessotto, P., Ellis, B. W., Jin, C., Karlsson, N. G., Zorlutuna, P., Kilcoyne, M., & Pandit, A. (2020). Distinct glycosylation in membrane proteins within neonatal versus adult myocardial tissue. Matrix biology, 85, 173. https://doi.org/10.1016/j.matbio.2019.05.001.

 

  1. Contessotto, P., Milcovich, G., Spelat, R., Marsico, G., Chaturvedi, A., Orbanić, D., & Pandit, A. (2016). Towards an elastin-based hydrogel platform for the repair of myocardial infarction. Frontiers in bioengineering and biotechnology, 4. https://doi.org/10.3389/conf.FBIOE.2016.01.02028.

 

  1. Dash, B. C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., & Pandit, A. (2015). An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 65, 126. https://doi.org/10.1016/j.biomaterials.2015.06.037.

 

  1. Dash, B. C., Mahor, S., Carroll, O., Mathew, A., Wang, W., Woodhouse, K. A., & Pandit, A. (2011). Tunable elastin-like polypeptide hollow sphere as a high payload and controlled delivery gene depot. Controlled release, 152(3), 382. https://doi.org/10.1016/j.jconrel.2011.03.006.



  2. Garcia, Y., Hemantkumar, N., Collighan, R., Griffin, M., Rodriguez-Cabello, J. C., & Pandit, A. (2009). In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer. Tissue engineering, 15(4), 887. https://doi.org/10.1089/ten.tea.2008.0104.